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Firms can enhance the profitability of marketing campaigns by targeting different mar-

keting actions to different customer segments. However, when designing targeting poli-

cies, firms typically use training data that closely resembles the focal campaign, and this

data is often scarce. We propose a method to augment focal training data with infor-

mation from different marketing campaigns, even when the campaigns differ in content,

audience, and timing. Our approach accounts for campaign and customer differences

and explicitly incorporates uncertainty in the measurement of treatment effects using a

Bayesian probabilistic matrix factorization framework. Scalability and computational

efficiency are achieved through a combination of closed-form conditional distributions

and gradient-based MCMC sampling. We validate the method using simulated data and

a sequence of field experiments at a luxury fashion retailer, and demonstrate substantial

improvements in predictive accuracy and customer response. By leveraging information

across campaigns, the proposed approach amplifies the value of firms’ marketing data

and offers a scalable and robust solution for designing targeting policies.
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1 Introduction

Many firms want to increase the profitability of their marketing campaigns by targeting dif-

ferent customers with different marketing actions. Retailers send personalized coupons based

on customers’ purchase histories; social networks show advertisements that vary depending

on users’ profiles or search behavior; financial services firms offer different products accord-

ing to customers’ investment records. To maximize the incremental effects, these actions are

often directed by targeting (uplift) models that predict customers’ responsiveness to different

marketing actions.

Targeting policies are typically trained using data that closely matches the focal cam-

paign, such as experiments with a similar campaign in a previous year or a small pilot

experiment. The more similar the customers and marketing actions in the training data

are to the focal campaign, the more accurately the firm can predict the responsiveness to

the focal campaign. However, training data that closely matches the focal campaign is often

scarce. This scarcity can be costly, as the expected performance of a targeting policy depends

upon the size of the training data. We investigate how to augment training data using data

from different marketing campaigns that do not closely match the focal campaign.

For example, a luxury fashion retailer distributes a large fashion catalog to a selected

group of customers at the start of the Christmas season (the “focal campaign”). It chooses

which customers to mail to using experimental data collected when mailing the previous year’s

Christmas catalog (the “focal data”). We propose supplementing the limited experimental

data available from the previous year’s Christmas catalog with information from experiments

conducted with the retailer’s other marketing campaigns. These could include Mother’s Day

promotions and back-to-school offers (the “source campaigns”).

Our paper focuses on two challenges in combining information across marketing cam-

paigns. The first challenge recognizes that marketing campaigns often involve different mar-
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keting actions. The marketing actions could have different value propositions: the focal

campaign may offer price promotions, while the source campaigns could communicate infor-

mation about product features. The marketing channels may differ: the focal campaign may

use direct mail, whereas the source campaigns used digital communications. The timing of

the campaigns could differ, with the focal campaign distributed at Christmas and the source

campaigns distributed at other times of the year. There could also be differences in creative

content, such as wording, sound, color, graphics, or other visual content. A complicating fac-

tor is that these differences are not always accurately documented. For example, the luxury

fashion retailer in our empirical application carefully documents the timing and mailing cost

of each catalog, but does not document the products and prices featured in each catalog.

The second challenge involves the measurement of treatment effects. The responsive-

ness to each campaign is measured with uncertainty, and the amount of uncertainty varies

across source campaigns. Different marketing campaigns produce different variation in cus-

tomer responses, and different campaigns also have different sample sizes. Transferring in-

formation about treatment effects across marketing campaigns will be more valuable if we

are able to account for the uncertainty in the measurement of treatment effects.

We propose an approach that combines the information from source and focal cam-

paigns to improve the firm’s targeting policy for the focal campaign. The proposed approach

takes into account the differences between the customers and the campaigns, and explicitly

incorporates uncertainty in the measurement of treatment effects. Our approach extends

the Bayesian probabilistic matrix factorization (Salakhutdinov and Mnih, 2008). Intuitively,

the approach represents customer segments and marketing campaigns using low-dimensional

embeddings, and models treatment effects as a function of these embeddings. Customer seg-

ments with similar embeddings respond similarly to different marketing actions. Campaigns

with similar embeddings yield similar patterns of treatment effects across segments. Our

extension incorporates information about uncertainty in the treatment effect measures to
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improve the embeddings and treatment effect estimates for the focal campaign.

As inputs, our approach requires an existing customer segmentation, and segment-

level estimates of treatment effects (with corresponding uncertainty) for the focal and source

campaigns. The segmentation and treatment effect measures replace the need to maintain

detailed records of the design characteristics of the source campaigns and customer segments.1

Instead, the model uses joint variation in treatment effects across customer segments to

identify which source campaigns are most similar to the focal campaign, and which customer

segments respond similarly to the firm’s marketing actions. The richness of this information

allows the model to learn these similarities quickly and accurately.

Different marketing campaigns often target different audiences. For example, a luxury

department store may only send cosmetics promotions to customers who purchased cosmetics

in the prior 12 months, and only send menswear promotions to customers who recently

purchased from the menswear department. Our model can accommodate eligibility criteria

that vary across campaigns, and learns from source campaigns even when the eligibility

criteria are different than in the focal campaign.

Our approach targets customers at the segment level; all customers within the same

segment receive the same action, but customers in different segments can receive different

actions. The proposed solution scales to a large number of segments, and could potentially

be applied to individual-level targeting.2 However, customer-level applications would require

measures of treatment effects and uncertainty at the individual level.

We evaluate the performance of the model using a combination of simulated data,

and data from a sequence of field experiments conducted by a luxury fashion retailer. We

demonstrate that information from source campaigns can greatly improve the performance

1We provide an extension that incorporates observable campaign design features and customer character-
istics, but the model generally does not require them.

2The scalability of our method is achieved because, with one exception, the conditional distributions of
the unobserved variables are derived as closed-form expressions. For this exception, we use gradient-based
MCMC sampling.

4



of targeting policies that rank customer segments according to their responsiveness to the

focal campaign. Improving marketing decisions by leveraging information in past campaigns

amplifies the value of the information in those past campaigns. The method we propose

will be most valuable for firms that have experimented frequently on their past marketing

campaigns, and carefully maintained a catalog of their past experiments.

The paper continues in Section 2 with a review of the related literature. In Section 3

we formally state the business problem and introduce the Probabilistic Matrix Factorization

model. We illustrate the properties of the model using synthetic data in Section 4 and using

field data in Section 5. The paper concludes in Section 6.

2 Related Literature

Our findings contribute to a growing literature in marketing focusing on the training of

targeting (uplift) policies. Recent research has studied: the design and evaluation of targeting

methods (Simester et al., 2020; Hitsch et al., 2024), welfare implications of personalized

pricing (Dubé and Misra, 2023), explainable targeting policies and unintended bias (Ascarza

and Israeli, 2022; Zhang, 2024). The business setting is similar to the problem studied in

Simester et al. (2025), who study the size of the focal experiment required to train and certify

a targeting policy. Like this study, their training method assumes an existing customer

segmentation and combines Bayesian priors with information from an initial experiment

conducted for the focal campaign. However, unlike this study, they do not use information

from multiple source campaigns. We propose methods to supplement the focal data with

data from past campaigns, so that firms may be able to greatly reduce the amount of focal

data required to train a targeting policy.

In concurrent research, Ellickson et al. (2023) and Huang et al. (2024) also propose

using data from source campaigns to target a new focal campaign. Ellickson et al. (2023)
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study email promotions and decompose the impact of different keywords and different types

of promotional offers. Huang et al. (2024) model the incremental effects of coupons using ob-

servable characteristics of consumer packaged goods (CPG) brands. There are two important

differences between their studies and our study. First, they use observable design features

of marketing campaigns, and identify similarities between campaigns from these features.

In contrast, our approach identifies campaign similarities from the variation in treatment

effects across customer segments and campaigns. Our method can incorporate observable

covariates, but does not require these covariates, and so does not depend upon accurate doc-

umentation of customer and campaign design characteristics. On the other hand, we require

that a sample of training data is available for the focal campaign, which their approaches do

not need.

The second major distinction is that we account for uncertainty in the treatment effect

estimates. When transferring information across campaigns, our approach recognizes that

treatment effects in different campaigns capture customer responsiveness to potentially dif-

ferent marketing actions (design characteristics), and this responsiveness is measured with

different precision. For example, the precision can depend on the size of the focal and source

campaigns. We show that accounting for the varying precision across campaigns improves

the accuracy of treatment effect predictions for the focal campaign. Our method extends

the probabilistic matrix factorization framework (PMF; Salakhutdinov and Mnih, 2008) by

explicitly accounting for the precision of the treatment effect measures used as inputs. This

extension is important for marketing applications, and requires a change in both the definition

and estimation of the PMF model. We demonstrate using both simulations and an empirical

study that incorporating the precision information sharply improves targeting performance

compared to the standard PMF framework.

Within the PMF literature, our proposed extension to the PMF model can be compared

with two papers. Lakshminarayanan et al. (2011) introduce Robust Bayesian Matrix Factor-

6



ization to handle outliers and atypical customer behavior in the Netflix problem (predicting

movie ratings for Netflix users). Their paper models heteroskedastic noise across user:movie

observations by multiplying a global precision parameter by user-specific and movie-specific

scaling factors. The latent scaling factors are estimated together with the user and movie

embeddings. In contrast, Yang (2017) incorporate heteroskedasticity information as an input

to the PMF framework (instead of estimating it). The paper aims to predict the conversion

rates of digital ads, and to mitigate the sparsity in responses, defines the precision of available

conversion rates as a function of the average conversion rates and the number of impressions.

Similar to these two papers, our proposed extension focuses on heteroskedastic noise. We

decompose the variation in observed treatment effects into two components: random devi-

ation from the embedding structure and imprecision in the measurement. We assume that

the first component is homoskedastic, and estimate it in a Bayesian framework along with

customer and campaign embeddings. The second component varies across observations. We

assume that uncertainties associated with the treatment effect measurements are known and

provide them as inputs to the model.

3 Proposed Method: Bayesian Matrix Factorization

Our approach extends a matrix factorization framework to estimate treatment effects across

marketing campaigns and customer segments. We parameterize the treatment effects using

campaign and customer embeddings, and infer these embeddings from the available (noisy)

treatment effect measures. We extend the standard PMF framework to account for the

precision of these measures. We use the estimated treatment effects to design a targeting

policy for the focal campaign.
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3.1 Model Setup

We consider a firm that operates in a market with S customer segments and distributes C

marketing campaigns to these customers. We index segments by s ∈ {1, .., S} and marketing

campaigns by c ∈ {1, .., C}. We assume that customer segmentation is known and is not

updated during model training. The effectiveness of marketing campaigns varies across seg-

ments. We denote a conditional average treatment effect (CATE) of campaign c in segment

s as mcs.

The firm’s goal is to predict CATEs for each customer segment that is eligible for

the focal campaign. To design a targeting policy, the firm can use the predicted CATEs to

identify segments for which the expected response exceeds the cost of the marketing action.

Alternatively, in our empirical application, we consider ranking customer segments based

upon their responsiveness to the focal campaign. Our method is agnostic to how firms

use the predicted treatment effects to design a targeting policy, and we focus instead on

estimating the CATEs.

For the focal and source campaigns, the firm has information about the CATEs in

different segments. We denote the observed treatment effect measure for campaign c in

segment s as “mcs. These measures could be obtained from pilot experiments, experiments

conducted the previous year, natural experiments, or observational methods. We assume

that the measurement precision λcs is known, and that the error has a zero-mean Gaussian

distribution:

p(“mcs|mcs) = N (“mcs|mcs, λ
−1
cs ) (1)

The notation N (x|µ, λ−1) indicates a Gaussian random variable x with mean µ and variance

λ−1, where λ is a precision parameter. Hereafter, we denote three C×S matrices for the true

treatment effects M = (mcs), the treatment effect estimates “M = (“mcs), and the precision of

these estimates Λ = (λcs).
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The available measurements are limited to the customer segments that were eligible

for a given campaign. We capture the eligibility criteria by qcs ∈ {0, 1}, which equals 1 if

segment s was eligible for campaign c, and zero otherwise.

Our proposed approach infers the unobserved true treatment effects M from the (noisy)

treatment effect measures “M and precision Λ. It recognizes that different customer segments

may respond similarly to a firm’s marketing campaigns, and that different marketing cam-

paigns may yield similar responses. We will infer these similarities from “M and Λ.

We provide a complete list of notations in Appendix A.

3.2 Model Structure

We parametrize the distribution of conditional average treatment effects mcs by segment

embeddings Us ∈ RK×1 and campaign embeddings Vc ∈ RK×1:

p (mcs|Us, Vc, λm) = N
(
mcs|U ′

sVc, λ
−1
m

)
(2)

where U ′
sVc and λ−1

m indicate the mean and variance of the normal distribution.

We place Gaussian priors on the embeddings for customer segments and marketing

campaigns:

p(U |µU ,ΛU) =
∏
s

N (Us|µU ,Λ
−1
U )

p(V |µV ,ΛV ) =
∏
c

N (Vc|µV ,Λ
−1
V )

(3)

where U = (Us) ∈ RK×S, V = (Vc) ∈ RK×C , and (µU ,ΛU) and (µV ,ΛV ) are mean and

precision matrices. For ease of exposition, we denote sets of parameters ΩU ≡ (µU ,ΛU) and

ΩV ≡ (µV ,ΛV ).

We further place Gaussian-Wishart priors on parameters (µU ,ΛU) and (µV ,ΛV ), and
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a Gamma prior on the parameter λm:

p(ΩU) = p(µU |ΛU)p(ΛU) = N
(
µU |η0, (κ0ΛU)

−1
)
· W(ΛU |W0, ν0)

p(ΩV ) = p(µV |ΛV )p(ΛV ) = N
(
µV |η0, (κ0ΛV )

−1
)
· W(ΛV |W0, ν0)

p(λm) = G(λm|α0, β0)

(4)

where κ0 is a scale factor of normal-Wishart distribution;W is the Wishart distribution with

ν0 degrees of freedom and K ×K scale matrix W0; G is a Gamma distribution with shape

α0 and rate β0.

Figure 1 illustrates our model using plate notations. An important characteristic of the

proposed model is the separability of customer embeddings Us and campaign embeddings Vc,

which allows for efficient inference. The parametrization of the treatment effects with a dot

product of embeddings does not limit the accuracy of the model. Because the embeddings

are sampled from a K-dimensional vector space, the model is flexible enough to approximate

non-linear patterns in treatment effects across segments and campaigns. We demonstrate

this point in Section 4.

Figure 1: Graphical Representation of the Model

The figure summarizes the design of the model using plate notation.

We next describe how we estimate the proposed model and the corresponding inference
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for the treatment effects M.

3.3 Inference

We estimate the conditional distribution p(mcs|M̂):

p(mcs|M̂) =

∫∫
p(mcs|U, V, λm, M̂)p(U, V, λm,ΩU ,ΩV |M̂)dUdV dλmdΩUdΩV (5)

where we used the law of total probability and the fact that mcs is independent of ΩU ,ΩV

conditional on U, V .

In Appendix B we derive a closed form expression for p(mcs|U, V, λm, M̂):

p(mcs|U, V, λm, M̂) =


N (mcs|U ′

sVc, λ
−1
m ) if qcs = 0

N
Ä
mcs

∣∣∣U ′
sVcλm+“mcsλcs

λcs+λm
, 1
λcs+λm

ä
if qcs = 1

(6)

The joint distribution p(U, V, λm,ΩU ,ΩV |M̂) and the integral in Equation (5) do not

have a closed form. We approximate the integral using an average over a set of independent

random samples {U t, V t, λt
m,Ω

t
U ,Ω

t
V }Tt=1:

p(mcs|M̂) ≃ 1

T

∑
t

p(mcs|U t, V t, λt
m, M̂) (7)

To draw independent samples {U, V, λm,ΩU ,ΩV }Tt=1, we implement the Gibbs sampling

algorithm. Gibbs sampling draws hidden variables iteratively, while conditioning on all other

hidden variables. This approach is computationally efficient if the conditional distributions

have a closed form. Our choice of priors allows us to derive an analytical form for the

distribution of all hidden variables except λm. This substantially decreases the computation
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time and hardware requirements.3

Conditional Distributions for U and V

We start our derivations with the conditional distribution of U :

p(U |V, λm,ΩU ,ΩV , M̂) =
p(U, V, λm,ΩU ,ΩV , M̂)∫
p(U, V, λm,ΩU ,ΩV , M̂)dU

=
p(M̂ |U, V, λm)p(U |ΩU)∫
p(M̂ |U, V, λm)p(U |ΩU)dU

∝

[∏
c,s

N
(“mcs|U ′

sVc, λ
−1
m + λ−1

cs

)] [∏
s

N (Us|µU ,ΛU)

]

∝
∏
s

[
N (Us|µU ,ΛU)

∏
c

N
(“mcs|U ′

sVc, λ
−1
m + λ−1

cs

)]
(8)

Equation (8) demonstrates that all components Us are conditionally independent, so

the sampling can be done in parallel for each Us separately. Furthermore, for each component

Us, we can use the properties of the conjugate priors to derive the sampling distribution:

p(U |V, λm,ΩU ,ΩV , M̂) =
∏
s

p(Us | V, λm,ΩU , M̂) =
∏
s

N
Ä
Us | µ̃Us , Λ̃Us

ä
(9)

where the parameters of the distribution can be expressed analytically:

µ̃Us = Λ̃−1
Us

[∑
c

qcs
λ−1
cs + λ−1

m

Vc“mcs + ΛUµU

]

Λ̃Us = ΛU +
∑
c

qcs
λ−1
cs + λ−1

m

VcV
′
c

(10)

By symmetry, we derive the closed-form expression for the campaign embeddings Vc:

p(V |U, λm,ΩU ,ΩV , M̂) =
∏
c

p(Vc | U, λm,ΩV , M̂) =
∏
c

N
Ä
Vc | µ̃Vc , Λ̃Vc

ä
(11)

3In our empirical application, we estimate the model using a 2023 MacBook Pro (32GB), achieving a
processing speed of approximately 20 seconds for every 1,000 samples.
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with the following parameters of the posterior distribution:

µ̃Vc = Λ̃−1
Vc

[∑
s

qcs
λ−1
cs + λ−1

m

Us“mcs + ΛV µV

]

Λ̃Vc = ΛV +
∑
s

qcs
λ−1
cs + λ−1

m

UsU
′
s

(12)

Conditional Distributions for ΩU and ΩV

Similarly, we can compute the distribution ΩU = (µU ,ΛU):

p(ΩU | U, V,λm,ΩV , M̂) ∝ p(U | ΩU)p(ΩU)

∝

[∏
s

N (Us | µU ,ΛU)

]
N

(
µU | η0, (κ0ΛU)

−1
)
W(ΛU | W0, ν0)

= N
(
µU | η̃U , (κ̃UΛU)

−1
)
W(ΛU | W̃U , ν̃U)

(13)

where the parameters of the posterior distribution can be expressed analytically:

κ̃U = κ0 + S; ν̃U = ν0 + S; η̃U =
η0κ0 + SU

κ0 + S
; U =

∑
s Us

S

W̃−1
U = W−1

0 +
∑
s

(Us − U)(Us − U)′ +
κ0S

κ0 + S
(U − η0)(U − η0)

′
(14)

The structure of the Normal-Wishart distribution suggests a two-stage sampling of ΩU :

(1) sample ΛU according to the Wishart distribution; (2) given the realization of ΛU sample

µU according to the normal distribution. The sampling distribution only depends upon the

segment embedding U , which contains all of the information about ΩU (see Figure 1).

We can derive the distribution for the parameters ΩV by symmetry:

p(ΩV | U, V, λm,ΩU , M̂) = N
(
µV | η̃V , (κ̃VΛV )

−1
)
W(ΛV | W̃V , ν̃V ) (15)
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where the parameters of the posterior distribution can be expressed analytically:

κ̃V = κ0 + C; ν̃V = ν0 + C; η̃V =
η0κ0 + CV

κ0 + C
; V =

∑
c Vc

C

W̃−1
V = W−1

0 +
∑
c

(Vc − V )(Vc − V )′ +
κ0C

κ0 + C
(V − η0)(V − η0)

′
(16)

Conditional Distribution for λm

Lastly, we derive the conditional distribution for λm:

p(λm|U, V,ΩU ,ΩV , M̂) ∝

[∏
c,s

N
(“mcs|U ′

sVc, λ
−1
m + λ−1

cs

)qcs] G(λm|α0, β0) (17)

Equation (17) does not support a closed-form expression for a posterior distribution.

Moreover, we could not identify a conjugate prior for λm that would absorb variation in λcs

across the campaign-segment combinations to ensure an analytical form for the posterior

distribution. We thus rely on the Markov Chain Monte Carlo (MCMC) approach to draw

samples from the conditional distribution p(λm|U, V,ΩU ,ΩV , M̂).

We can improve the efficiency of the MCMC sampling for Equation (17) by incorporat-

ing the derivative of the log-likelihood function. In particular, the logarithm of Equation (17)

and its derivative can be expressed as follows:

log p(λm|U, V,ΩU ,ΩV , M̂) =−
∑
s,c

qcs
2

ï
(“mcs − U ′

sVc)
2

λ−1
cs + λ−1

m

+ log
(
λ−1
cs + λ−1

m

)ò
+ logZ + log G(λm|α0, β0)

(18)

∂ log p(λm|U, V,ΩU ,ΩV , M̂)

∂λm

=−
∑
s,c

qcs
2

ï
(“mcs − U ′

sVc)
2

(λm/λcs + 1)2
− 1

λm (λm/λcs + 1)

ò
+

α0 − 1

λm

+ β0

(19)
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where Z is the normalization constant.

The derivative in Equation (19) does not include the normalization constant Z, which

allows us to use the Hamiltonian Monte Carlo (HMC) sampling approach. Similarly to

the Metropolis-Hastings algorithm, the HMC generates samples from a target distribution,

p(x) ∼ π(x)/Z, by first sampling random variables from a simpler distribution, q(xt|xt−1),

and then accepting (or rejecting) new samples using a stochastic rule. The stochastic rule

is defined so that over time, a sequence of accepted samples closely approximates the target

distribution p(x). HMC improves on the Metropolis-Hastings algorithm by utilizing the

derivative of the log-likelihood function. This allows for more efficient exploration of the

parameter space, and leads to faster convergence (burn-in) and better approximation of the

target distribution. We provide details in Appendix C.

Connecting the Steps

We summarize the algorithm for estimating our proposed model in Algorithm 1. Our algo-

rithm yields a distribution p(mcs|M̂). This is a Gaussian mixture distribution with T compo-

nents with equal weights, where each component follows the normal distribution specified in

Equation (6). This distribution has two helpful properties. First, the mean of this Gaussian

mixture is an average of the components’ means. We can thus write a point prediction as

follows:

m∗
cs =


1
T

∑
t U

t
s
′
V t
c if qcs = 0

1
T

∑
t (λcs + λt

m)
−1 ·

(
λt
mU

t
s
′
V t
c + λcs“mcs

)
if qcs = 1

(20)

Second, we can sample from a posterior distribution (mcs|M̂) by first sampling a com-

ponent (with equal probabilities), and then sampling from the corresponding normal distri-

bution. This allows us to obtain a complete distribution of the predicted values rather than

a point estimate.
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Algorithm 1 Proposed Method: Bayesian Matrix Factorization

1: Inputs: (“mcs, λcs, qcs) for c = 1, .., C and s = 1, .., S
2: Initialize: (U0, V 0, λ0

m)
3: for t = 1 to τ + T do
4: Sample λt

m using HMC algorithm from Appendix C:

λt
m ∼ p(λm|U t−1, V t−1, M̂)

5: Sample (Ωt
U ,Ω

t
V ) using Equations (13)-(16):

Ωt
U ∼ p(ΩU |U t−1), Ωt

V ∼ p(ΩV |V t−1)

6: for s = 1 to S do
7: Sample segment embeddings U t

s using Equations (8)-(10):

U t
s ∼ p(Us|V t−1, λt

m,Ω
t
U , M̂)

8: for c = 1 to C do
9: Sample campaign embeddings V t

c using Equations (11)-(12)

V t
c ∼ p(Vc|U t, λt

m,Ω
t
V , M̂)

10: Discard the first τ samples of (U t, V t, λt
m), and use the remaining T samples to approxi-

mate the posterior distribution p(mcs|M̂):

p(mcs|M̂) ≃ 1

T

∑
t

p(mcs|U t, V t, λt
m, M̂)

where p(mcs|U t, V t, λt
m, M̂) is defined in Equation (6).
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The estimator in Equation (20) has an intuitive interpretation. If measurement “mcs

is not available for a segment-campaign, the model uses 1
T

∑
t U

t
s
′
V t
c for prediction. If mea-

surement “mcs is available (qcs = 1), the model combines “mcs and U t
s
′
V t
c weighted by the

precision of each component, and then averages these predictions across T samples. If the

measurement in the segment is very precise (λcs → +∞), the prediction converges to the

measurement: m∗
cs → “mcs. And vice versa, limλcs→0m

∗
cs =

1
T

∑
t U

t
s
′
V t
c .

The proposed model allows learning representations for a new marketing campaign

Vnew without completely retraining the model. In practice, firms can estimate the model

with a large database of source campaigns once and save the MCMC draws. For any new

focal campaign, we can use the closed-form conditional distributions in Equations (11)-(12) to

draw embeddings for the new campaign, without updating the draws of segment embeddings.

3.4 Discussion

We have framed the firm’s problem as predicting CATEs at the segment level, but the

proposed method also supports estimation at the individual customer level. Firms could

use the customer-level estimates to design targeting policies that vary marketing actions

for individual customers rather than segments. A challenge is that the firm would require

information about treatment effects for focal and source campaigns at the individual customer

level, including both point estimates and precision. If the firm has this information, then our

method scales and can be applied to this task.

The proposed method can be extended to incorporate observable covariates for cus-

tomer segments and marketing campaigns. For example, firms often have the past purchas-

ing histories for customer segments, or maintain records of the mailing dates (seasonality)

for past marketing campaigns. One approach for incorporating this information is to rep-

resent the embeddings as a linear combination of the covariates with segment-specific or
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campaign-specific weights:

p(U |βU ,ΛU) =
∏
s

N (Us|βUXs,Λ
−1
U )

p(V |βV ,ΛV ) =
∏
c

N (Vc|βVXc,Λ
−1
V )

(21)

where Xs and Xc are the covariates for segment s and campaign c, and βU and βV corre-

spond to the (random) coefficients. The hierarchical model preserves the analytical forms of

the conditional distributions, and estimation of the model remains efficient. An alternative

approach is to use nonlinear functional forms. For example, Adams et al. (2010) incorporates

covariates into the standard PMF model using Gaussian processes.

In Section 2, we acknowledged that our approach builds on the PMF formulation

(Salakhutdinov and Mnih, 2008). When the PMF model was initially proposed, the ‘Netflix

Problem’ was used as motivation. The goal is to predict Netflix movie ratings for a new

user : movie combination, based on the ratings by other users, and ratings by that user for

other movies. There are two important differences between this problem and our problem.

First, the training data in our problem represents noisy measures of the treatment effects, in-

stead of the “true” treatment effects. To incorporate the associated uncertainty, we extended

the PMF framework by introducing the λcs terms, and consequently adjusting the inference

process (for λm). Second, in the Netflix problem the goal is to predict movie ratings where no

rating exists. In our setting, the focal data contains noisy measures of the treatment effects,

which changes the objective from value imputation to value updating.

4 Synthetic Data

We use simulation analysis to illustrate and validate the properties of the proposed method

with a known data generating process. We show that the proposed method can effectively
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combine information across marketing campaigns and customer segments, and scale to many

campaigns and many segments.

4.1 Data Generating Process

We summarize the data generating process (DGP) in this section, and provide additional

details in Appendix D. Throughout the simulation analysis, we maintain the same default

parameter values, and vary parameters one-by-one to illustrate model performance. We

emphasize that our goal is to predict treatment effects in different segments for a focal

campaign, rather than to recover the parameters of the DGP.

Our DGP has three important components. First, marketing campaigns and customer

segments have (latent) characteristics that define the treatment effects. Treatment effects

are similar for marketing campaigns with similar characteristics, and similar segments have

similar treatment effects. We denote the segment characteristics as Us, and campaign char-

acteristics as Vc. For illustrative purposes, we simulate clusters of customer segments, and

clusters of campaigns. Notice a difference in notations: we use Us and Vc for latent character-

istics, and Us and Vc for estimated embeddings for segments and campaigns. In Section 4.3 we

will illustrate that these latent characteristics and estimated embeddings are not equivalent

(by design).

Second, the treatment effect variation is not fully explained by the latent segment

and campaign characteristics. Our data generating process assumes that for each segment-

campaign combination, the “true” treatment effect mDGP
cs is a function of latent characteris-

tics f(Us,Vc) and an additive Gaussian noise with zero mean and precision λf . We simulate

the noise terms independently across observations. We initially consider f(Us,Vc) = Us · Vc,

but also consider a nonlinear function in Section 4.3.

The third component of the data generating process recognizes that the firm does
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not observe “true” treatment effects mDGP
cs , and instead observes noisy information about

the treatment effects. We will model this information as coming from experiments. Our

simulation randomly draws experimental sample sizes for each campaignNc, and assumes that

the firm allocates these samples proportional to segment sizes ws in balanced experiments.

We further assume that the idiosyncratic noise in the outcomes for individual observations

is λ−1
ϵ , so the difference-in-means estimates follow the distribution:“mcs ∼ N

(
mDGP

cs , λ−1
cs

)
(22)

λcs = wsNc · λϵ (23)

We estimate the proposed model using the simulated (“mcs, λcs) for c = 1, .., C and

s = 1, .., S. Notice that the model calibration and inference does not use information about

the latent characteristics Us and Vc, or the “true” treatment effects mDGP
cs . We will use these

known parameters from the DGP to evaluate the model performance.

4.2 Predictive Performance

In Figure 2, we evaluate the predictive performance of the proposed model. On the x-axis,

we vary the size of the training data in the focal campaign. On the y-axis, we plot the mean

squared error (MSE) when comparing the predicted treatment effects to the true treatment

effects. We report the performance of three models. The performance of the “Focal Only”

model is reported using the dotted line. This is a baseline model that uses treatment effects

from the training data as predicted values, and does not use any information from the source

campaigns. The performance of the Focal Only model improves linearly (on the log-log scale)

with the size of the training data.

The dashed line corresponds to the “Embeddings Only” model, which predicts treat-

ment effects using the segment and campaign embeddings alone, without combining the
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Figure 2: Overall Predictive Performance

The figure reports the accuracy of the treatment effect predictions from different models. The x-axis reports
the sample size of the focal data and the y-axis measures prediction accuracy using mean squared error
(MSE).

embedding-based predictions with the Focal Only measures. Specifically, the Embeddings

Only model predicts treatment effects using the first line in Equation (20) and isolates the

information contained in the estimated embeddings. With little focal training data, the Em-

bedding Only model performs better than the Focal Only model, because it leverages the

segment embeddings (even though the embedding for the focal campaign is just random).

Intuitively, the U embedding captures information about the generic responsiveness of dif-

ferent customer segments to the firm’s marketing actions. With additional focal training

data, the Embeddings Only model initially improves because estimates of U and V both

improve, and the focal campaign embedding is no longer random. However, the performance

of the Embeddings Only model eventually plateaus as the sample size of the focal experiment

continues to increase. This is because the DGP incorporates unexplained noise (λf ), which

cannot be captured without direct measurement of the focal treatment effects.
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Our proposed model (the solid line) combines the predictions from the Embeddings

Only and Focal Only models. We label this the “Combined Model”. Due to the Bayesian

updating structure, the combination is optimal, and the performance of the model is better

than either of the individual approaches. When the sample size of the focal data is small,

the Combined Model closely follows the Embeddings Only model and out-performs the Focal

Only model. When the focal experiment is large, the Focal Only model provides precise

estimates of the response to the focal campaign in each segment. As a result, the Focal Only

model converges to the Combined Model.

Recall that our proposed model is motivated by and extends the PMF model. We

introduce an adjustment to this model to account for the precision of the treatment effect

measurements in the source and focal data. This modification has two implications for model

performance. First, the Combined Model combines the (noisy) treatment effect estimates

from the focal data with the predictions from the Embeddings Only model. These two

components are weighted by the corresponding uncertainty, and Figure 2 confirms that the

addition of the focal data estimates in the Combined Model outperforms the Embeddings

Only model.

Second, the estimation of the embeddings themselves accounts for the precision in the

source and focal data. The Standard PMF assumes that the available source and focal

information is correct. For example, in the Netflix problem, the movie ratings provided by

customers are known with certainty. However, in our context, treatment effects are measured

with different precision across marketing campaigns and customer segments. Our proposed

approach adjusts the embedding estimation for this varying precision.

Figure 3 demonstrates that accounting for the precision of the inputs yields better

embedding estimates. In particular, we compare the performance of the Embeddings Only

model to the Standard PMF model. Both models estimate treatment effects for the focal

campaign from the embeddings alone. However, our Embeddings Only model adjusts for
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Figure 3: Predictive Performance When Varying Noise in the Source and Focal Data

The figure compares the predictive performance of the Embeddings Only model and the Standard PMF. On
the x-axis, we vary the amount of noise in the source and focal data, and the y-axis measures prediction
accuracy using mean squared error (MSE).

uncertainty when estimating the embeddings, while the Standard PMF model does not. The

y-axis measures the accuracy of the treatment effect predictions for the focal campaign. The

x-axis varies the precision of the source and focal treatment effects used as inputs by both

models. When the inputs are measured precisely (the right side of the x-axis) both models

perform equally well. However, as the precision of the inputs deteriorates, the Embeddings

Only model provides more accurate predictions because it accounts for the imprecision. In

our empirical application in Section 5, which uses data from a sequence of direct mail field

experiments, we compare the Standard PMF model with the Focal Only, Embeddings Only

and Combined models. The findings reinforce the conclusion that accounting for imprecision

in the inputs sharply improves accuracy.
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4.3 Functional Form

Recall that we model treatment effects using the dot product of U and V (see Equation 2).

This should not be interpreted as an implicit assumption that treatment effects are generated

using the same functional form. If treatment effects have a different structure, the model can

approximate the treatment effects by adapting the U and V embeddings, without changing

the dot product specification. Intuitively, the flexibility in the Combined Model extends

beyond the dot product of U and V to include the structure inherent in the embeddings

themselves. We can adjust the model’s flexibility by varying the dimensionality of these

embeddings.

We illustrate this point by changing the functional form in the DGP. In particular, we

modify the DGP to include a nonlinear relationship between the latent customer and segment

characteristics:

f(Us,Vc) = U ′
sVc + sign(U ′

sVc) · (U ′
sVc)2 + (V ′

cVc)2 (24)

We estimate the Embeddings Only model using data from this modified DGP and

report its performance in Figure 4. On the x-axis, we vary the dimensionality of the U

and V embeddings. This allows us to approximate treatment effects with a more flexible

model. The rest of the model stays unchanged, including the dot-product specification in

Equation (2). In Figure 4 we report the performance of both the Embeddings Only model and

the “Theoretical Best”. The Theoretical Best represents the predictive performance when

using the true functional form and latent characteristics from the DGP (Equation (24)), so

that the only error remaining in the model is variation in the treatment effects that the

embeddings do not explain (λf ).

When the embeddings each have just two dimensions, there is insufficient flexibility

to capture the non-linearities in the DGP. However, with just three dimensions, the perfor-

mance of the Embeddings Only model quickly improves. This improvement continues as the
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Figure 4: Model Performance with Non-Linear DGP

The figure reports the predictive accuracy of the Embeddings Only model when using a non-linear func-
tional form in the DGP (Equation 24). The x-axis reports the number of dimensions (K) in the segment and
campaign embeddings. The y-axis measures prediction accuracy using mean squared error (MSE). The “The-
oretical Best” indicates the predictive performance when using the true functional form from Equation (24).

flexibility of the embeddings grows. With ten dimensions, the Embeddings Only model per-

fectly fits the systematic variation in treatment effects across the segments and campaigns,

and achieves its theoretical maximum performance. Even though the dot product functional

form may appear mis-specified when the true model is Equation (24), with sufficient flexi-

bility in the embeddings, the model is able to perfectly approximate the treatment effects.

We conclude that the dot product specification should not be interpreted as a restrictive

assumption in the model.

4.4 (Ir)relevant Source Data and Scalability

A source campaign can provide valuable information for predicting treatment effects in the

focal campaign, even if the set of customers eligible for the source campaign is different than
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the customers in the focal campaign. The basis of this argument is that the source data

can help to estimate the segment and campaign embeddings, and this in turn will improve

predictions for the focal campaign. To investigate this conjecture we incrementally added

segments to the source campaigns in the estimation sample, where none of these additional

segments are eligible to receive the focal campaign.4

Figure 5 illustrates the performance of the Combined Model when adding “Seemingly

Irrelevant” segments to the source campaigns. We do not include these segments when

evaluating MSE for the focal campaign. The findings are consistent with our conjecture.

The incremental segments improve the performance of the Combined Model on the focal

campaign, even though none of the additional segments are eligible for that campaign.

Figure 5: Seemingly Irrelevant Segments Can Provide Information

The figure reports the accuracy of the Combined Model when incrementally adding segments to the source
campaigns that are not eligible for the focal campaign. The y-axis measures prediction accuracy using mean
squared error (MSE) for the focal campaign.

An implication of the findings in Figure 5 is that firms should add all of their available

4For illustrative purposes, we increase sparsity of information in the default DGP. In particular, we create
synthetic data in which only 5% of the segments are eligible for each source campaign.
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source data when estimating the Combined Model. There is no need to trim the source data

to remove seemingly irrelevant customers. This introduces a new question: how well does

the estimation scale as the number of campaigns and segments grows? We investigate model

scalability in Figure 6, where we report the time required to estimate each iteration of the

Combined Model as we increase S × C.5 The results reveal a linear relationship between

estimation time and the number of segments × campaigns. Bayesian models do not always

scale well, but we are able to (1) derive analytical expressions for the conditional distributions

used in the Gibbs sampling, and (2) reduce the MCMC sampling to a single variable with a

known derivative of the log-likehood.

Figure 6: Scalability to Segment x Campaigns

The figure reports the tradeoff between computation time and size of the problem. The y-axis measures
computation time in seconds per 1,000 MCMC samples. The x-axis measures the total number of seg-
ment : campaign combinations (S × C).

This computational efficiency is reassuring. In our simulation analysis (Figures 2 -

5In each iteration, we increase both parameters S and C, while maintaining the same ratio S = C.
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4), we estimate the model with 1,000 segments and 1,000 campaigns, and the estimation

converges in 45 seconds for each set of parameters. In our empirical application, the model

yields 1,000 samples from the posterior distribution in 12 seconds on a MacBook Pro 2023

(32GB). We discuss this empirical application next.

5 Empirical Application

We use data from field experiments conducted by a luxury fashion retailer to demonstrate the

performance of the proposed method in an empirical setting. The retailer distributed direct

mail campaigns to its customers, and for each campaign, randomly assigned customers into

mail and no mail conditions. In this empirical setting, the proposed method substantially

improves targeting decisions compared to the Focal Only baseline, as well as the standard

PMF approach (which does not account for uncertainty in the source campaigns). More-

over, it estimates embeddings that capture meaningful relationships between segments and

campaigns that were unobserved to the model.

5.1 Data Overview

Our empirical application uses data provided by a major US luxury fashion retailer. The re-

tailer operates physical stores in many cities, together with an online website. The assortment

spans men’s and women’s shoes and apparel, jewelry, accessories, and beauty products.

The retailer regularly distributes catalogs, postcards and other direct mail campaigns

to its existing customers to announce and promote new products. The focus of these cam-

paigns varies, and could include specific brands, specific product categories, specific seasons,

or special events. To measure the overall impact (ATE) of each direct mail campaign on

incremental purchases and profits, the retailer conducted A/B tests. The firm randomly
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selected a ‘no mail’ control sample of qualified households for each campaign. We received

the campaign descriptions and the circulation files identifying households randomly assigned

to the mail and no mail conditions. The campaign descriptions include (cryptic) campaign

names, mailing format (catalog, postcard, or brochure), mailing costs, and in-home dates.6

Our analysis focuses on direct mail campaigns distributed from January to August 2017.

The focal campaign is a Q3 Beauty Postcard, a postcard promoting beauty products mailed

to over 230,000 customers in August 2017.The 60 source campaigns include all direct mail

experiments that involved at least 5,000 customers and were distributed prior to the focal

campaign. We document the variation in campaign characteristics, and report randomization

checks in Appendix F. In particular, the sample sizes in source campaigns varied substantially,

from about 5,000 to over 1,000,000 customers. This variation affects how much we can learn

about customer responsiveness from each of these source campaigns. It is this observation

that motivated our extension of the standard PMF framework.

We define customer segments using geographic areas. In particular, each segment in

our analysis corresponds to a 2-digit zip-code. While zip-code segmentation might seem

simplistic, it is practical for the retailer. Its stores are almost all located in separate 2-digit

zip codes. The retailer often stratified experiments and limited distribution of direct mail

campaigns to certain zip-codes. Moreover, we will demonstrate in the next subsection that

zip-code segmentation captures sufficient customer heterogeneity to enable targeting.

Our outcome measure is purchase incidence in the four weeks after the in-home date of

the direct mail campaign. We construct the outcome variable using the retailer’s transaction

data, which includes customer identifiers and combines both online and in-store channels.

6Recall that our proposed method does not use these characteristics to transfer information across cam-
paigns. However, we will refer to these characteristics in our post-analysis of the embeddings.
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5.2 Targeting Performance

We assume that the firm wants to rank eligible customer segments according to their ex-

pected incremental purchase incidence in response to the focal campaign. We evaluate the

performance of our proposed model using three steps.

Step 1: We randomly split the focal data into two subsets. Within each iteration, we

randomly select 30% of customers in the focal data as focal training data and the remaining

70% as focal validation data.

Step 2: We use the 30% focal training data and the data from the source campaigns to

estimate the Combined Model. The Combined Model uses the difference-in-means estimates

and the corresponding precisions for all customer segments and campaigns (source and focal).

Step 3: We use the 70% focal validation data to compare the performance of the Focal

Only and Combined Model. We rank customers in the focal validation data based on the

predicted treatment effects and assign the focal treatment to the top-φ customers. For each

value of φ we calculate the incremental purchase incidence acquired from mailing to these

customers.7

As a benchmark, we estimate the Focal Only model. The Focal Only model uses the

30% focal training data and a differences-in-means estimator to predict the treatment effect

for each of the eligible segments in the focal campaign. The Focal Only policy does not use

any data from the source campaigns.

We compare the performance of the Focal Only and Combined Model in Figure 7. To

aid interpretation, we report performance improvements for each model over a “Random”

benchmark. The Random policy ranks customer segments randomly and assigns the promo-

tional treatment to the top-φ segments, where φ ∈ [0, 1]. In Figure 7, the x-axis measures

7We provide additional details about both the construction of the policies and the evaluation of perfor-
mance in Appendix E.
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the share of treated customers (φ). The y-axis measures the performance improvement as

the purchase incidence gain over the Random policy.

Figure 7: Targeting Performance in the Empirical Application

The figure reports the incremental purchase incidence over a random policy
for the Focal Only and Combined Model. The x-axis measures the share
of treated customers (φ). For a given φ, the y-axis measures the difference
in purchase incidence between a targeting model and the Random policy in
percentage points.

We highlight two observations in Figure 7. First, the Focal Only models improves upon

the Random policy for almost all values of φ ∈ [0, 1]. The performance of the Focal Only

model confirms that the zip-code segment definitions capture meaningful heterogeneity in

the treatment effects. Furthermore, the performance improvements are larger on the left side

of the plot, indicating that it is easier to identify a small number of customer segments that

are most responsive to the focal campaign. The Focal Only model struggles to rank-order

the least-responsive segments.

Second, Figure 7 demonstrates that information from source campaigns can improve

targeting policies for a focal campaign. The Combined Model yields higher expected purchase
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incidence than the Focal Only model for essentially all values of φ. The only exceptions are

small values of φ, where the Focal Only model is also able to identify the segments that are

most responsive to the focal campaign. The Combined Model and Focal Only model use the

same (zip-code) segments, and in the absence of source data, the two models yield equivalent

expected performance. We conclude that the performance improvement for the Combined

Model is attributable to the transfer of information about treatment effects from the source

data.

In Table 1, we report the areas under the performance curves for different targeting

models (AUTOC; Yadlowsky et al. (2025)). Each row corresponds to a different targeting

model, and for each model, we report the AUTOC score together with the standard errors

from bootstrap iterations. On average over φ ∈ [0, 1], the Focal Only model outperforms

the Random Policy by %0.084, and the Combined model more than doubles the gains from

targeting (%0.173). Using average revenue per purchase incidence and a number of direct

mail pieces distributed each year, a %0.1 increase in purchase incidence yields over $65

million in additional revenue annually. For a large retailer, improved targeting yields sizable

improvements in marketing effectiveness.

We can also compare the performance of the proposed model to the Standard PMF.

In Table 1, the Standard PMF does not yield an improvement over the Random Policy.

The challenge is that the Standard PMF assumes all treatment effects measurements for the

source campaigns are ground truth. However, as we previously noted, there is substantial

variation in sample sizes across source campaigns. Treatment effects for some segment x

campaign combinations could be measured with as few as 30 experimental samples, while

other segment x campaigns could contain over 2,000 samples. By treating these data as

equally-informative, the Standard PMF overfits noisy treatment effect measures, and the

embeddings poorly predict the true treatment effects. In contrast, our proposed approach

(Combined Model) accounts for the precision of the treatment effect measures in the source
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Table 1: Incremental Purchase Incidence: AUTOC

Targeting Method AUTOC (%)

Focal Only
0.084
(0.042)

Embeddings Only
0.172
(0.035)

Combined Model
0.173
(0.035)

Standard PMF
0.003
(0.050)

The table reports the incremental performance of the Combined Model over
the Focal Only model when using different campaigns as Focal. Performance
is measured as revenue per customer, and incremental performance is mea-
sured as the area between the R(φ) curves for the Combined Model and the
Focal Only model (see Appendix E). Standard errors are in parentheses.

campaigns and substantially improves performance over both the Random Policy and the

Focal Only model.

5.3 Embedding Structure

The embeddings estimated by our proposed model capture meaningful relationships between

customer segments and marketing campaigns that were unobserved by the model. To in-

vestigate the campaign embeddings, we identified source campaigns that the model located

close to the focal campaign. Recall that the focal campaign in our empirical analysis is the

Q3 Beauty Postcard. The three closest campaigns in the embeddings space are Q1 Beauty

Postcard, Clinique Brochure, and Lancome Brochure. Notably, all of these three campaigns

promoted beauty products. This was not initially obvious to our research team from the cam-

paign descriptions. Clinique and Lancome campaigns were sponsored by vendors rather than

the retailer’s marketing team, and they had no word “beauty” in the campaign description.

We related these campaigns to the beauty products after observing the estimation results.
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In our empirical setting, the campaigns most-distant from the focal campaign focused

on lapsed customers. Reactivation campaigns tend to promote discounts rather than product

categories. They are also distributed to customers with no spending in the last year, while the

Q3 Beauty Postcard was mailed to customers with recent purchases in the beauty category.

The differences in content and audiences can explain why these campaigns were placed in

different parts of the embedding space.

To investigate the segment embeddings, recall that the segments in our empirical appli-

cation are geographic divisions, representing US Postal Service 2-digit zip-codes. We would

expect that segments that are geographic neighbors would respond more similarly to firms’

marketing campaigns than segments that are not located close to each other.8 We also expect

that segment embeddings produced by our model will position segments that respond more

similarly to firms’ marketing actions closer to each other in the embedding space. We next

evaluate whether segments that are geographic neighbors are also positioned as neighbors in

the embedding space.

We start by identifying the number of segments (2-digit zip codes) within each 1-digit

zip code. We then use segment embeddings to calculate inertia. Inertia summarizes the

Euclidean distances from each segment to the centroid of the cluster (1-digit zip code). It

calculates a within-cluster sum-of-squared distances to measure the dispersion of the 2-digit

zip codes in each 1-digit zip code, and then aggregates these sum-of-squares across all 2-digit

zip codes in the dataset.

To interpret this measure for the estimated segment embeddings, we compare it with

a random benchmark. In the random benchmark we randomly reassign segments to 1-digit

zip codes, while preserving the number of segments in each 1-digit zip code. We repeat the

random reassignments 100,000 times and present the random benchmark as a distribution.

8This expectation is commonly used as an identifying assumption in research comparing the behavior of
customers on either side of state borders (see for example, Shapiro et al., 2021; Anderson et al., 2010).
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Figure 8: Segment Embeddings Capture the Zip-Code Assignments

The figure reports the histogram of Inertia measures for 100,000 random assignments of 2-digit zip codes
to 1-digit zip codes. Inertia is measured using Euclidean distances in the segment embedding space. The
dashed vertical line represents the inertia for the true allocation of 2-digit zip codes to 1-digit zip codes.

Figure 8 reports both the inertia for the true zip code assignments (dashed vertical

line) and the distribution of inertia for the random assignment. The inertia of the true

assignments is lower than the inertia for all but 1.4% of the 100,000 random assignments.

We emphasize that the Combined Model did not have access to the zip code information

during training; the model infers embeddings from the treatment effect measures for the

source and focal campaigns. The evidence that neighboring zip codes are also neighbors in

the embedding space indicates that the model predicts that neighboring zip codes will have

a similar pattern of response across the marketing promotions.

5.4 Information Value of Source Campaigns

We finish the empirical analysis by investigating how much different source campaigns con-

tribute to the performance of the Combined Model. We first evaluate the targeting perfor-
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mance of the Combined Model with random subsets of the source campaigns in Figure 9.

The x-axis indicates how many random source campaigns are used to estimate the Combined

Model. The y-axis reports the AUTOC score. The left and right-most points corresponds to

the performance of the Focal Only and the Combined Model in Table 1. We observe that the

performance of the Combined Model improves with additional source campaigns. However,

there are diminishing returns: the incremental performance improvements are larger when

there are fewer source campaigns, and the curve flattens out when there are many source

campaigns. In our empirical setting, incorporating 50% of the available source campaigns

(30 out of 60), yields 75% of the improvement compared to the full sample.

Figure 9: Incremental Purchase Incidence with Random Source Campaigns

The figure reports the targeting performance of the Combined Model when estimated with random subsets
of source campaigns. For each number of source campaigns, we report the average AUTOC score over 100
bootstrap iterations. The left-most point corresponds to the Focal Only policy.

Combining information across marketing campaigns improves targeting performance of

the focal policy even when source campaigns are intuitively less relevant. In Figure 10, we

estimate the performance of the Combined Model with subsets of source campaigns. The focal
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campaign in our analysis is a Q3 Beauty Postcard. The Combined Model outperforms the

Focal Only baseline even when source campaigns only include (1) non-beauty campaigns, (2)

campaigns in different seasons (not summer), (3) non-postcards (catalogs and brochures), and

(4) campaigns conducted over 6 months ago (least recent). The performance with seemingly

less-relevant campaigns tends to be lower than when randomly choosing source campaigns

(see Figure 9), but this information is still valuable for improving the focal targeting policy,

and our proposed method provides a way to incorporate this source data into predictions of

treatment effects.

Figure 10: Incremental Purchase Incidence with Seemingly Less Relevant Source Campaigns

The figure reports the targeting performance (AUTOC) of the Combined Model when estimated with source
campaigns that are seemingly less relevant. For each evaluation, we randomly selected 10 source campaigns
that satisfy the requirement.

6 Conclusion

Targeting marketing promotions is an important application for machine learning in market-

ing. The performance of a targeting policy depends upon how much training data is available

to reliably estimate treatment effects for different customers. Traditionally, firms have used

information from either the same campaign conducted in a prior period, or a pilot experi-

ment. We propose a method that augments these data by transferring information between
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marketing campaigns.

An important challenge when transferring information between campaigns is that cam-

paigns often vary on many dimensions. This includes variation in marketing actions, variation

in timing (seasonality), and variation in the customers eligible for different campaigns. These

differences are often poorly documented, and it is unclear a priori how they contribute to

variation in treatment effects.

Our proposed method addresses this challenge by summarizing information about cus-

tomers and campaigns in separate embeddings. This solution offers many advantages. It does

not require that the design characteristics of the campaigns are well documented. The model

easily scales to handle many customers segments and many source campaigns. We explicitly

account for uncertainty in the treatment effect measurements using a Bayesian framework.

The method learns from source campaigns even if there is variation in which customers are

eligible to receive each campaign.

We recognize both limitations to the proposed method and opportunities for future

research. First, the model assumes that the customer segments are known in advance. In our

empirical application the segment structure was obtained from the geographic allocation of

households to zip codes. In other applications, the segment structure may not be known in

advance. Future extensions to the model could focus on learning the customer segmentation

along with predicting treatment effects (Kim et al., 2023; Zhang and Misra, 2024).

Second, the model assumes that there is a sample of focal data available. This data

helps to locate the focal campaign in the campaign embedding space. Other approaches rely

on the observable design characteristics of the campaigns and characteristics of customer

segments to combine information across campaigns (see for example Huang et al., 2024).

In Equation (21), we discussed incorporating segment and campaign characteristics into our

approach using a linear specification, and future research could extend the proposed methods

to accommodate more flexible functional forms.
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With more applications, the boundaries of the proposed model can be explored more

completely. In our empirical application the source and focal campaign all distributed pro-

motions through direct mail in a luxury retail setting. Future studies could investigate the

use of alternative marketing channels and larger variation in both value propositions and

marketing goals. This will contribute to our understanding of the limitations of the model

and identify additional opportunities for future research.
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A Table of Notations

Model Structure

S Number of customer segments.

C Number of marketing campaigns.

mcs True treatment effect for campaign c in segment s. Matrix version of mcs is M .“mcs Observed treatment effect for campaign c in segment s. Matrix version of “mcs is “M.

λcs Observed precision of “mcs. Matrix version of λcs is Λ.

qcs Binary variable identifying whether segment s is eligible for campaign c.

Us Segment embeddings.

Vc Campaign embeddings.

K Dimensionality of Us and Vc.

λm Variance of normal distribution of p (mcs|Us, Vc) (Equation 2).

Xs, Xc Observable segment and campaign covariates (respectively).

βU , βV Weights for covariates in segment and campaign embeddings (see Equation 21).

Prior Parameters

ΩU ≡ (µU ,ΛU ) Prior parameters for U .

ΩV ≡ (µV ,ΛV ) Prior parameters for V .

p(ΩU ) Gaussian-Wishart priors for (µU ,ΛU ).

p(ΩV ) Gaussian-Wishart priors for (µV ,ΛV ).

p(λm) Gamma prior for λm.

Model Inference

µ̃Us , Λ̃Us Parameters of normal distribution used to estimate U .

µ̃Vc , Λ̃Vc Parameters of normal distribution used to estimate V .

η̃U , κ̃U ,ΛU Parameters of normal distribution used to estimate ΩU .

W̃U , ν̃U Parameters of Wishart distribution used to estimate ΩU .

η̃V , κ̃V ,ΛV Parameters of normal distribution used to estimate ΩV .

W̃V , ν̃V Parameters of Wishart distribution used to estimate ΩV .

α0, β0 Parameters of Gamma distribution used to estimate λm.

Simulation Analysis DGP

Us, Vc Latent characteristics of segments and campaigns.

mDGP
cs True treatment effects from DGP.

λf Gaussian noise component of true treatment effects (unexplained by embeddings).

λϵ Variation in individual responses.
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B Closed Form Solution for Treatment Effects

To find the closed-form solution for p(mcs|U, V, λm, M̂) in Equation (6) we use Bayes’ theorem

to decompose the original probability:

p(mcs|U, V, λm, M̂) =
p(mcs, U, V, λm, M̂)

p(U, V, λm, M̂)
=

p(M̂ |mcs, U, V, λm)p(mcs|Us, Vc, λm)

p(M̂ |U, V, λm)
(25)

Equation (25) depends on whether “mcs is available (qcs = 1) or unobservable (qcs = 0).

Case 1: qcs = 0. There is no available estimate of the treatment effect for campaign c and

segment s. In this case M̂ does not contain “mcs, thus p(M̂ |mcs, U, V, λm) = p(M̂ |U, V, λm)

and

p(mcs|U, V, λm, M̂) = p(mcs|Us, Vc, λm) = N
(
mcs

∣∣U ′
sVc, λ

−1
m

)
(26)

Case 2: qcs = 1. Only “mcs would be impacted by conditioning on mcs. Thus,

p(mcs|U, V, λm, M̂) =
p(mcs, U, V, λm, M̂)

p(U, V, λm, M̂)
=

p(“mcs|mcs)p(mcs|Us, Vc, λm)

p(“mcs|Us, Vc, λm)

=
N (“mcs|mcs, λ

−1
cs )N (mcs|U ′

sVc, λ
−1
m )

N (“mcs|U ′
sVc, (λcs + λm)−1)

= N
Å
mcs

∣∣∣∣U ′
sVcλm + “mcsλcs

λcs + λm

,
1

λcs + λm

ã (27)

After combining Equations (26) and (27) we obtain Equation (6).

C Hamiltonian Monte Carlo Algorithm

In Section 3.3, we proposed using the Hamiltonian Monte Carlo (HMC) algorithm to sample

λm. The performance of the HMC depends on two key tuning parameters: the step size ϵ

and the number of steps L.

Researchers have proposed various extensions to the standard HMC algorithm to iden-

tify appropriate values for these hyperparameters. We implemented the HMC algorithm with

adaptive step-size tuning, as discussed in Hoffman et al. (2014). The core idea behind this

method is to adaptively adjust the step size during the warm-up period to reach a desired
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acceptance rate α∗ of the sampling (Nesterov, 2009). This process requires maintaining the

average “past” deviations δt of the realized acceptance probability αt from the target accep-

tance rate α∗, as well as the average of the past step sizes. For stability, we use a weighted

average of the logarithms of the step sizes. We describe our implementation of the HMC

sampling in Algorithm 2.

Algorithm 2 Hamiltonian Monte Carlo Sampling

1: Inputs: λt−1
m , τ , δ, ϵ

2: Initialize: ϵ0 = 1, t0 = 10, κ0 = 0.75, γ0 = 0.05, α∗ = 0.8

3: if t = 1 then ϵ = ϵ0

4: Set Lt ← ⌈1/ϵt−1⌉
5: Set λ← λt−1

m

6: Sample ω ∼ N (ω | 0, 1)
7: Set λ̃← λ, ω̃ ← ω

8: for l = 1, . . . , L do

9: Update ω̃ ← ω̃ + ϵ
2
· ∇π(λ̃).

10: Update λ̃← λ̃+ ϵ · ω̃.
11: Update ω̃ ← ω̃ + ϵ

2
· ∇π(λ̃).

12: Set αt ← min
{
1, π(λ̃)

π(λ)
exp
î
ω2−ω̃2

2

ó}
13: Sample a uniformly distributed random variable u ∼ U(0, 1).
14: Set next sampled λm as

λt
m ←

 λ̃ if u ≤ αt,

λ otherwise.

15: if t ≤ τ then

16: Set δ ←
Ä
1− 1

t+t0

ä
δ + 1

t+t0
(α∗ − αt)

17: Set ϵ← 10ϵ0 exp
Ä
−

√
t

γ0
δ
ä

18: Set log ϵ← t−κ0 log ϵ+ (1− t−κ0) log ϵ

19: else

20: Set ϵ← ϵ

D Data Generating Process in Section 4

We provide a complete specification for sampling the synthetic data in Algorithm 3. In

the default setting, we simulated 1,000 campaigns and 1,000 segments with two-dimensional
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latent campaign and segment characteristics with the following input parameters:

• Number of segments and campaigns: S = 1, 000 and C = 1, 000

• Treatment effects: F(x, y) = x′y and λf = 0.1

• Measurement error: λϵ = 0.001, Nfocal = 105, and N source = 2, 000

Algorithm 3 Generating Simulated Data

Inputs: S, C, λf , F , λϵ, Nfocal, N source

Initialize: ΣU ← ( 4 0
0 4 ), ΣV ← ( 4 0

0 4 ), ws ← 1/S

for s = 1 to S do

Sample µU
s ∼ Uniform {( 3

3 ) , (
1
3 ) , (

3
1 ) , (

1
1 )}

Sample Us ∼ N
(
µU
s ,ΣU

)
for c = 1 to C do

Sample µV
c ∼ Uniform {( 3

3 ) , (
1
3 ) , (

3
1 ) , (

1
1 )}

Sample Vc ∼ N
(
µV
c ,ΣV

)
for s = 1 to S, c = 1 to C do

Set µcs = F (Us,Vc)
Sample mDGP

cs ∼ N
Ä
µcs, λ

−1
f

ä
Set NC ← Nfocal

for c = 1 to C − 1 do

Sample Nc ∼ Exponential
(
N source

)
for s = 1 to S, c = 1 to C do

λcs = wsNcλϵ

for s = 1 to S, c = 1 to C do

Sample m̂cs ∼ N
(
mDGP

cs , λ−1
cs

)

E Policy Evaluation in the Empirical Illustration

We consider a targeting policy Pφ that allocates a marketing promotions to top-φ% of cus-

tomers with the highest predicted treatment effects:

Pφ,s =

 1 if “mfocal,s ≥ Qφ (“mfocal,1:S)

0 otherwise
(28)
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where Pφ,s indicates a recommended action in segment s for the focal campaign, “mfocal,s is

a predicted treatment effect in segment s for the focal campaign, and Qφ(x) is a quantile

function for the input array x.

For each model and different values of φ ∈ [0, 1], we compute the expected value per

customer of the policy in Equation (28) using the Horvitz-Thompson estimator:

Vφ =
1

N

∑
i

Yi ·
I (Wi = Pφ,si)

P (Wi = Pφ,si)
(29)

where N is a number of customer in the focal campaign, si indicates the segment to which

customer i belongs to, and Wi is a treatment indicator for customer i in the focal campaign.

In Figure 7, we compare the performance of the targeting policies to a Random policy.

For the random policy, because the ranking of the segments is randomized, each customer

has φ probability of being treated regardless of segment s, and we can rewrite:

VR
φ = φV0 + (1− φ)V1 (30)

where V1 and V0 represent the expected reward per customer in the Treatment and Control

conditions respectively. Figure 7 reports the difference between Equations 29 and 30:

R(φ) = Vφ − VR
φ =

1

N

∑
i

Yi ·
I (Wi = Pφ,si)

P (Wi = Pφ,si)
− φV0 − (1− φ)V1 (31)

When R(φ) ≥ 0 for φ ∈ [0, 1] it indicates that the ranking of customers by the policy

is aligned with the ranking of treatment effects for these customers out-of-sample. We notice

that for φ = 1 or φ = 0, the targeting policies (model-based and random) are identical to

uniform treatment or control, so R(1) = R(0) = 0. To compare two targeting policies we

can compare their respective R(φ) values for a given φ or integrate the area between the

R(φ) curves for two models over the range φ ∈ [0, 1].

F Campaign Summary Statistics and Randomization

Check+

Figure 11 summarizes the characteristics of 60 source marketing campaigns in our empirical

analysis.
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Figure 11: Summary Statistics of Source Campaigns

(a) (b)

(c) (d)

We conduct randomization checks using an F-test approach. Specifically, for each mar-

keting campaign, we estimate a linear regression where the binary treatment indicator (mail

or no mail) is regressed on five pretreatment covariates. The covariates include spending per

customer in the past three months, number of store visits in the past three months, number of

weeks since the last purchase, share of purchases made through the online channel, and share

of products returned (all measured before the in-home date for the respective campaign).

We estimate a separate regression for each campaign, record the p-value of the F-test in

each regression and then summarize the distribution in Figure 12. A Kolmogorov–Smirnov

(KS) test does not reject the null hypothesis that the p-values are uniformly distributed; the

p-value of the KS test is 0.67. This suggests that the treatment assignment is independent

of pretreatment variables, supporting the validity of the randomization.
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Figure 12: Distribution of p-values in the Randomization Test

The figure reports histograms of the distribution of p-values in the randomization test for each of 61 campaigns
(60 source campaigns and 1 focal campaign). The y-axis represents the count of campaigns, and the x-axis
represents p-values from the F-test with five pretreatment variables.
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